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Abstract. Scientific visualization techniques have been used to probeand understand better the physics of non-equilibrium
flows. A visualization methodology for non-equilibrium flowsimulations using 3-D velocity distribution functions(VDFs)
is illustrated in application to various non-equilibrium flow problems. A one-dimensional normal shock wave problem is
considered for two different upstream Mach numbers corresponding to weak and strong non-equilibrium flow conditions.
The iso-surfaces of 3-D VDFs inside the shock wave obtained using various solution techniques including the ES-BGK
method, DSMC technique, Mott-Smith solution, and the Navier-Stokes(NS) distribution functions using Chapman-Enskog
theory are compared and contrasted. The visualization technique is extended to two-dimensional hypersonic flow atM = 10
past a flat plate with sharp leading edge by comparing the isosurfaces of 3-D NS VDFs obtained at three different locations
in the flowfield. The visualization of 3-D VDFs is shown to provide valuable information about the degree and direction of
non-equilibrium for both 1-D and 2-D flows.
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1. INTRODUCTION

Visualization plays a very important role in the analysis and interpretation of numerical solutions. The development
of flow visualization techniques and tools for rendering scalar, vector and tensor fields obtained by Computational
Fluid Dynamics (CFD) techniques has significantly accelerated the adaptation of CFD in many areas of science and
engineering[1]. Visualizing higher-dimensional (> 3D) data has been an active research area[2, 3] in order to design
methods that overcome the difficulties involved in representing such data on a two-dimensional computer screen.
Higher-dimensional data occur in a wide range of applications including medical imaging, uncertainty visualization
and fluid flows. Non-Equilibrium flows that are encountered ina number of flows including supersonic flight at high
altitudes, flows expanding into vacuum and flows in microscale devices are governed by the Boltzmann equation[4]
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where f is the velocity distribution function(VDF) that depends on7 independent variables - time, 3 physical
coordinates, and 3 velocity coordinates - and for a general three-dimensional flow problem. Unlike continuum
equations, like the Navier-Stokes equations, which are in terms of macroscopic parameters including density, velocity,
temperature and pressure, the Boltzmann equation is in terms of the velocity distribution function. In spite of the VDF
being the fundamental quantity of interest, visualizationtechniques applied to non-equilibrium flow problems solved
using the Boltzmann equation and its approximations have been restricted to macroscopic parameters mainly due to the
high dimensional nature of the VDF. The macroscopic parameters, which are moments of the VDF, do not completely
describe the features of non-equilibrium flows. The main goal of this paper is to study the distinguishing features
of non-equilibrium flows by probing the VDF using visualization techniques for 3-D scalar fields. In particular, the
structure of a normal shock wave is considered and VDFs inside normal shock waves obtained using various solution
techniques are visualized. Later, the VDFs at various locations of two-dimensional hypersonic flow past a flat plate at
M = 10 are presented. The remainder of the paper is organized as follows. Section 2 briefly provides the necessary
theory & background including the numerical and visualization techniques used; Section 3 presents the results and
discusses the same with Section 4 reserved for conclusions.



2. THEORY & BACKGROUND

The Boltzmann equation in its original form is often very difficult to solve due to its non-linear integro differential
collision term. Non-equilibrium flows that are governed by the Boltzmann equation are typically solved using approx-
imations to the original Boltzmann equation or by resortingto statistical techniques like the direct simulation Monte
Carlo (DSMC) technique. Most of the approximate methods make an assumption for the form of the distribution func-
tion. Some of the popular forms for the non-equilibrium distribution function are briefly described below.
Equilibrium Maxwellian Distribution Function
The VDF in equilibrium flow conditions is the Maxwellian or isotropic Gaussian given by

fM =
β 3

π3/2
exp[−β 2((cx−u)2+(cy−v)2 +(cz−w)2)] (2)

whereu, v, andw are the mean velocities in thex, y, andz directions respectively.β = (2RT)−1/2 with T being the
local temperature andR the specific gas constant.
Relaxation to Anisotropic Gaussian Distribution : ES-BGK
A popular technique used to solve the Boltzmann equation is the use of model kinetic equations in which the complex
collision term in the right hand side of the Boltzmann equation is replaced with a relaxation-type term and given by
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For the ellipsoidal statistical Bhatnagar-Gross-Krook (ES-BGK) equation[5], the VDF relaxes towards an anisotropic
Gaussian[6] given by.
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whereρ is the density,R is the specific gas constant,c0 is the mean velocity vector.
Navier-Stokes Distribution Function : Chapman-Enskog Theory
An approximation to the Boltzmann equation for very small perturbations from equilibrium conditions was developed
using a first order approximation to the VDF based on the Chapman-Enskog theory[7] and is given by
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where fM is the equilibrium Maxwellian distribution function at thelocal flow conditions,ρ is the density,c0 is the
mean velocity vector,κ is the thermal conductivity withc′ being the thermal velocity vector.
Bi-Modal Distribution Function : Mott-Smith Theory
Mott-Smith solution[4, 8] for the structure of a normal shock wave expresses the VDF at any location within the shock
wave as a bi-modal distribution given by

n(x) fMS =
n1

1+exp{α(x/λ1)}
fM1 +
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fM2 (6)

where fM1 and fM2 are Maxwellian distributions corresponding to the upstream and downstream conditions of the
shock wave. The density profile is then given by,

ρ
ρ1
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(7)

Numerical & Visualization Methods
A finite volume scheme with third order accurate WENO scheme for spatial fluxes[9] is used to solve the ES-BGK
model kinetic equations. The DSMC solutions were obtained using Bird’s fortran codeDSMC1S.fthat is specialized
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FIGURE 1. (Left) Isosurface of the maxwellian velocity distributionfunction corresponding to an isovalue off̄ = 1E−3 using
a 40×26×26 velocity mesh, (middle) a 1-D maxwellian showing the isosurface level and (right) isosurface using a 10×10×10
velocity mesh.

to solve the problem of a one-dimensional stationary shock wave. While the VDF is directly solved for in the ES-BGK
method, the DSMC simulation requires the sampling of molecules to construct the 3-D VDF. The VDF obtained at a
particular physical location is a 3-D scalar field that is a function of the velocity space coordinates. This 3-D scalar
field is visualized using the classical technique of iso-surfacing. The shape of these iso-surfaces serves as an indicator
of the degree and direction of non-equilibrium at that physical location.

3. RESULTS AND DISCUSSION

In this section, the classical non-equilibrium problem of the structure of stationary normal shock waves in Argon is
considered for two upstream Mach numbers (M) corresponding to both weak (M=1.4) and strong non-equilibrium
flow problems (M=2.5). Before proceeding further to probe the non-equilibrium flows, we present some iso-surfaces
of the equilibrium Maxwellian distribution function that,in non-dimensional form, is given by

f̄M =
1

π3/2
exp[−{(c̄x− ū)2 +(c̄y− v̄)2 +(c̄z− w̄)2}] (8)

All velocity components are non-dimensionalized by the local value ofβ and f is non-dimensionalized byβ 3. The
equation for the isosurfaces of the non-dimensional equilibrium Maxwellian distribution function̄fM is given by

(c̄x− ū)2 +(c̄y− v̄)2 +(c̄z− w̄)2 = constant (9)

with T being the local temperature. The maximum value off̄M occurs when ¯cx = u, c̄y = v, and c̄z = w and the
maximum value is given bȳfM = 1/π3/2. Figure 1 shows isosurfaces of the equilibrium Maxwellian distribution
function corresponding to non-zero mean velocity in the x-direction for f̄ = 1E−3 and also the isovalue level on a
1-D maxwellian. Clearly, the iso-surfaces off̄M are spheres whose centre corresponds to the mean velocity ofthe flow
at that physical location and whose radius depends on the iso-value chosen.
Weak Non-Equilibrium : M = 1.4
The weak non-equilibrium flow problem that has been considered is that of the structure of a normal shock wave
in Argon at an upstream Mach number of 1.4. For both the ES-BGKmethod and the DSMC method, the number
of cells in the physical space was fixed at 400. For the ES-BGK method, the number of grid points in the velocity
space was 26×16× 16. Figure 2 shows the normalized density and temperature profiles obtained using the model
kinetic equations, DSMC technique, and Mott-Smith theory.The macroscopic parameters obtained using the ES-BGK
method agrees extremely well with that obtained using the DSMC technique while the Mott-Smith solution predicts
a thicker shocker wave. The VDFs were constructed using various solutions including the direct simulation Monte
Carlo (DSMC), model kinetic equations (ES-BGK), Navier-Stokes (NS) VDF from Chapman-Enskog theory, and the
Mott-Smith theory. The NS distribution function was constructed using the shear stress and heat flux values obtained
using the ES-BGK method. The number of molecules used to sample the 3-D distribution function from the DSMC
simulation was about 65 million. Iso-surfaces of the non-dimensionalized velocity distribution function are visualized



in Figure 3 for f̄ = 1E−3 at the physical location corresponding tox/λ = −2.0. The distribution functions obtained
using different methods look almost identical and deviate very little from the spherical isosurfaces of the equilibrium
Maxwellian distribution.
Strong Non-Equilibrium : M = 2.5
In this section, we present results for a stronger shock wavein Argon with an upstream Mach number ofM = 2.5.
The number of cells in the physical space was fixed at 400 for both ES-BGK and DSMC methods. The number of
grid points in the velocity space was fixed at 40× 26× 26. Figure 4 shows the normalized density and temperature
profiles obtained using the ES-BGK method, DSMC method and Mott-Smith theory. The macroscopic parameter
profiles obtained using the ES-BGK and DSMC methods agree well except in a small region upstream of the shock
wave in the normalized temperature profile. The Mott-Smith solution once again predicts a thicker shock wave.
Figure 5 shows the iso-surfaces of non-dimensional VDF corresponding to an isovalue of̄f = 1E− 3 within the
normal shock wave at the locationx/λ = −2.0. The number of molecules used to sample the 3-D VDF from the
DSMC simulation was about 70 million. Clearly, the VDFs deviate from the spherical Maxwellian distribution with
an elongation along the x-direction indicating significantnon-equilibrium along the x-direction. While the ES-BGK
and Mott-Smith solutions predict strong and weak bimodal VDFs respectively, the DSMC method predicts a high
eccentricity ellipsoidal isosurface for the VDF. The NS distribution function resembles the Mott-Smith distribution
function but significantly underpredicts the fraction of molecules with a negative x-velocity. One of the reasons for the
ES-BGK and DSMC methods predicting different VDFs upstreamof the shock wave, in spite of excellent agreement
in the macroscopic parameter profiles atx/λ = −2.0, is due to the fact that the ES-BGK method uses a collision
frequency that is independent of the molecular velocities.Figure 6 compares the iso-surfaces for various values of
the non-dimensional VDF obtained using the ES-BGK method. The presence of holes in the iso-surface at values of
f̄ <= 1E−6 is related to the extent of the velocity domain used in the ES-BGK method. Decreasing the extent of the
velocity domain would lead to the presence of holes for larger values of f̄ .
Two-Dimensional Hypersonic Flow
The visualization technique described above can be extended to two-dimensional flows with regions of non-
equilibrium. We consider the two-dimensional hypersonic flow of cold nitrogen past a flat plate with a sharp leading
edge at a freestream Mach number ofM = 10.0. The freestream temperature is 47K with the plate temperature fixed
at 300K. A Maxwell model was used for the gas-surface interaction with an energy accomodation coefficient of
0.75. The DSMC solver SMILE[10] is used to obtain the macroscopic parameters, the derivatives of which are used
to construct NS VDFs using the Chapman-Enskog theory at three different locations in the flowfield. The density
and temperature contours along with the three VDF locationsin the flowfield are shown in Figure 7. Location 1
corresponds to a distance ofx/λ = 0.25 from the sharp leading edge of the plate and is within the region of the
flowfield where non-continuum effects are likely to play a significant role. Location 2 and 3 are further downstream
at distancesx/λ = 17 andx/λ = 57 respectively from the leading edge. Figure 8 compares isosurfaces of the NS
VDFs corresponding to an isovalue of̄f = 1E − 3 for the three locations. Clearly, the maximum deviation from
equilibrium is at location 1 where the VDFs show significant distortion in bothx andy directions. The orientation
of the isosurfaces along a direction that is neither along x-axis nor along y-axis clearly indicates the 2-D nature of
non-equilibrium. The degree of non-equilibrium decreasesas we move further downstream with the distortion of
iso-surfaces decreasing as we move from location 1 to 3.

4. CONCLUSIONS

A visualization methodology has been proposed to visualizenon-equilibrium flow simulations using 3-D VDFs.
Results were presented for both 1-D and 2-D flow problems. A 1-D normal shock wave problem was considered for
two different upstream Mach numbersM = 1.4 andM = 2.5. The iso-surfaces of the VDF atx/λ = −2.0 inside the
shock wave obtained using various solution methods including the ES-BGK method, DSMC technique, Mott-Smith
solution, and the Chapman-Enskog theory were presented. The isosurfaces of the distribution function obtained using
various methods for the weak non-equilibrium case were almost identical whereas different methods gave significantly
different isosurfaces for the strong non-equilibrium case. The differences can be attributed to fundamental assumptions
associated with each of the methods including the form of thecollision frequency. The technique was also used to
visualize the Navier-Stokes velocity distibution functions at different locations in a 2-D hypersonic flow past a flat
plate. The isosurfaces clearly indicate the 2-D nature of the non-equilibrium with distortions in bothx andy directions
with the distortion being maximum closest to the leading edge where the rarefaction effects are most significant.
Hence, the visualization of VDF can provide valuable information about the degree and direction of non-equilibrium.



It can also be used to assess accuracy of the numerical solution with respect to grid resolution in the velocity space for
deterministic solution techniques.
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FIGURE 2. Comparison of normalized density and temperature profiles obtained using various methods forM = 1.4
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FIGURE 3. Iso-surfaces of the non-dimensional velocity distribution function within a normal shock wave with upstream Mach
numberM = 1.4 corresponding to an iso-value of̄f = 1E−3 obtained using various methods.
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FIGURE 4. Comparison of normalized density and temperature profiles obtained using various methods forM = 2.5

FIGURE 5. Iso-surfaces of the non-dimensional velocity distribution function within a normal shock wave with upstream Mach
numberM = 2.5 corresponding to an iso-value of̄f = 1E−3 obtained using various methods.
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FIGURE 6. Iso-surfaces of the non-dimensional velocity distribution function within a normal shock wave forM = 2.5 obtained
using the ES-BGK method and corresponding to various iso-values.

FIGURE 7. Density and Temperature contours of two-dimensional flow ofnitrogen past a flat plate atM = 10 with the three VDF
locations indicated

FIGURE 8. Comparison of isosurfaces of the velocity distribution function at (left) Location 1, (middle) Location 2, (right)
Location 3 corresponding to an isovalue off̄ = 1E−3
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